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STRESS-STRAIN STATE OF AN ICE SHEET SUBJECTED TO A MOVING
LOAD UNDER SHALLOW-WATER CONDITIONS

V. D. Zhestkaya UDC 532.526.2

The following two classes of problems of determining the stress-strain state of an ice sheet
under a moving load are considercd: determination of the resonant velocity for a load moving
over a continuous ice field and calculation of the deflections of an ice field with a bounded
ice-free zone subjected to a moving load. The problems are solved in a dynamic formulation.
The algorithin of solution is based on the finite-clement method and finite-difference methods.
Examples of calculations are given.

The necessity of ice breaking can arise in navigation and in the operation of engineering structures in
river and seawater areas in spring, autumn, and winter. For this purpose, the resonant method of ice breaking
[1] realized by means of an air-cushion ship (ACS) can be used. In this case, the main parameters of motion
of the ship (velocity and trajectory of motion) for which ice breaking is most efficient from the viewpoint
of the expenditure of energy must be specificd. The main specific features that occur in this case can be
estimated by the method proposed by the author [2]. This method is based on the equation of viscoelastic
vibrations of ice under the action of a moving load [3]
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the Laplace equation for the function ®, and the boundary conditions at the bottom of a basin and the
ice-water interface
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where D is the flexural rigidity of the plate, 7y is the strain-relaxation time, w is the deflection of the ice sheet,
pw and p; are the densities of water and ice, respectively, g is the acceleration of gravity, h is the thickness
of the ice sheet, ® is the fluid-motion potential, p is the external-load intensity, and H is the basin depth.
The coordinate axes x and y lie in the plane of the ice plate with the x axis directed along the direction of
motion of the load and the z axis directed upward.

The algorithm of solution of the above problem outlined in [2] allows one to study a wide range of
problems connected with the motion of load over an ice sheet. One most important problem is calculation of
the resonant velocity v, upon rectilinear motion of a point force. To study the dependence of v, on the basin
depth H and the ice thickness h, we performed a series of calculations in which an ACS was modeled by the
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point force P equal to the ship weight.

A clamped rectangular-in-plan ice plate 1200 m long and 200 m wide was considered. The coordinate
origin was located at its left edge and the = axis was directed to the right aloung the symmetry axis of the
plate. At the initial moment, the force P was at rest and was applied at the point with the coordinates
o = 50 m and y = 0: the corresponding static deflection of the plate was taken into account. The following
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law of motion of the load P was assumed: the load P begins to move along the x axis and, for the time g,
attains the velocity v, at which it keeps on moving in the same direction.

In the calculations, the velocity of the load v, the basin depth H (3, 5, and 7 m), and the ice thickness
h (0.3, 0.4, 0.5, 0.75, and 1.0 m) were varied.

The choice of the above values of H was motivated by the following reasons. As far as the author is
aware, the problem of unsteady motion of an ACS over an ice sheet under shallow-water conditions has not
vet been solved. However, this problem is of considerable interest, since icebreakers cannot be used in basins
of small depth and, hence, the resonant method implemented by means of an ACS (1] is expedient.

The values of the other parameters of the problem were as follows: Young’s modulus E = 0.73-1010 Pa,
Poisson’s ratio v = 0.3, p; = 900 kg/m?, p,, = 1000 kg/m3, 77 = 10 sec. and P = 0.4-10% N, which corresponds
to a Voyageur-tvpe ACS. The discrete model of an ice plate was represented by a set of 16-D.O.F. square
finite elements with side a = 50 m. The size of the time grid At [2] was taken to be 0.3125 sec, which
ensured convergence of the finite-difference process. The static deflection of the ice plate was determined
automatically at the beginning of execution of a computer code.

The stresses and deflections were determined for a steady stress—strain state, i.e., for the period of time
where the steady strain pattern of the ice sheet shifts together with the load P. In this stage, the effects that
arise owing to acceleration of the ship from the zero to the finite velocity v do not affect the stress—strain
state; therefore, the acceleration time rp was set to zero.

The calculations were performed in the following order. For a certain value of the velocity, the deflec-
tions were calculated at close moments of time from the initial moment to the moment the load reached the
plate edge. From calculation results, we determined the time (initial and final positions of the load P) after
which the process can be considered steady. Thereafter, the stresses and deflections were calculated for the
specified value and smaller values of v. For example, if, for v = 6.4 m/sec, the motion is found to be steady
when the load P passes through the point x = 650 m, one can assert that the motion at this point is also
steady for, say, v = 6 m/sec or v = 5 m/sec; hence, the deflections and stresses can be calculated without
verifying this fact additionally. ’

Figures 1 and 2 show the relative maximum deflection wyax/ st (Wmax is the maximum dynamic
deflection and wg; is the maximum static deflection caused by the force P applied at the center of the ice
plate) and the relative normal stresses o max/Oxst (Trmax and oy are determined similarly to wmax and
wyt ) versus v for H =3 m and h = 0.3, 0.4, 0.5, 0.75, and 1.0 m (curves 1-5, respectively). The character of
the diagrams is the same for any depth considered, the only difference being that the maxima in the curves,
which are located near the point v = /gH in all the diagrams, are shifted toward larger values of v. The
diagram of ¢ max/0yst versus v is similar to the diagram of oz max [T st

Figure 3 shows the resonant velocity vy versus the ice thickness i for basin depths of H = 7, 5, and
3 m {curves 1-3, respectively).

The results imply the following conclusions.
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1. The resonant velocity depends on the basin depth H and the ice thickness. One can see from Fig. 1
that the maximum of the relative deflection shifts toward larger values of v as the ice thickness h increases.
For the values of H and h considered and small thickness of the ice, the velocity vy that corresponds to
the maximum deflection (resonant velocity) slightly exceeds the phase velocity of the gravity wave in water
vg = vgH. The curves of v versus h have a small curvature in the range of the H and h values considered
(Fig. 3). ’

2. For small values of H (3-5 1n), the maxima in the curves of relative stresses (see Fig. 2) are shifted
relative to the maxima of the deflections (see Fig. 1) toward larger values of v: however, this shift is small
and is approximately 2% of the resonant velocity v,. For H = 7 m, the maximum deflections and stresses
occur for almost the same velocity values.

3. The maximum values of the relative deflections that occur for v, are close to each other at different
values of H. For different H and the same thickness, the scatter in the values of wyax /st amounts to 15-16%
of the minimum relative deflection for given h. This is true for stresses as well.

It is of interest to study the effect of the velocity v on variation in the shape of the elastic surface of
the ice plate. Figure 4 shows diagrams of the deflections along the z axis for A = 3 m and h = 0.4 m; curves
1 and 2 correspond to steady motion for v = 5.6 and 10 m/sec, respectively: the arrow shows the position of
the load P. These diagrams are similar to the experimental curves obtained by Takizawa [4. 5], who revealed
several characteristic stages of deflection. According to the classification proposed by Takizawa, the diagram
for the resonant velocity v = 5.6 m/sec corresponds to a retarded transient regime: the maximum deflection
occurs behind the load, the rear edge of the “deflection cup” at load is higher than the front edge, and the
deflections are relatively large. The diagram for v = 10 m/sec can be related to the two-wave regime or
the transition from the two-wave to the solitary-wave regime: the load tends to overtake the front wave; the
waves that occur in front of the load are shorter than those behind the load; since the velocity exceeds the
resonant value, the maximum deflection decreases.

Using the above algorithm, we solved the following problem. which is of practical significance: The
point load P moves with constant velocity v over a clamped rectangular ice plate with a hole; the trajectory
of load motion coincides with the plate symmetry axis z (Fig. 5). This situation can oceur when an ACS
crosses a bounded region of open water (mine. for example). So far, neither analytical nor numerical studies
of the stress—strain state of ice have been performed in this formulation.

We consider some results of the solution of the above problem for the following data: the plate length
L = 1200 m (Fig. 5), its width B = 200 m, L; = 550 m, the length and width of the hole (mine) 100 wm,
P =04-10° N, E = 0.73 x 10!° Pa, v = 0.3, the ice thickness h = 0.5 m, the basin depth H = 5 m,
pi = 900 kg/m>, p,, = 1000 kg/m3, 75 = 10 sec, and v = 7 m/sec. The load started to move from the point
located 50 1 from the left side of the plate. The acceleration time 7y was set to zero. The discrete model of
a plate consisted of square finite elements with side a = 50 m.
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The calculations show that the presence of a mine has little effect on the pattern of ice deflections until
the load approaches thé mine. The differences become pronounced after the load has erossed the mine: the
maximum deflection increases significantly compared to the case of a plate without a hole. Figure 6 shows
the diagram of deflections along the x axis at the moment the load P reaches the ice sheet after it has crossed
the mine (the solid curve). For comparison, deflections in the plate without a hole (the dashed curve) were
calculated, all other factors being the same.

It has been found that the maximum deflection is the greater, the lower the velocity. In comparison
with the plate without a hole, the maximum deflection increases by approximately a factor of 1.5 and by
more than twofold imediately after the load has crossed the mine for v = 7 m/sec (Fig. 6) and v = 5 m/sec,
respectively. The increase in the deflection can be attributed to the fact that when the load crosses the mine,
a gravity wave of larger amplitude compared to the flexural-gravity wave forms in the continuous ice field:
this wave reaches the edge of the mine and intensifies the action of the load P.
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